Comparative Direct Compression Property of a Novel Pregelatinized Starch in Paracetamol Tablets

Author:

Balcha Balla Tamrat12ORCID,Mary Joseph Nisha1,Belete Anteneh13ORCID

Affiliation:

1. Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia

2. School of Pharmacy, College of Health Sciences and Medicine, Wolaita Sodo University, P.O. Box 158, Wolaita Sodo, Ethiopia

3. Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia

Abstract

Background. Among all the pharmaceutical dosage forms, tablets are still the most preferred and the most commonly used option because of their advantages. The direct compression method of tablet preparation exempts several steps needed in the granulation method. Therefore, the pursuit of better direct compression tablet excipients is evident in contemporary research endeavors. Pregelatinized Taro Boloso-I starch has comparable flow properties and higher compressibility and compactibility than Starch 1500®. However, there is no evidence in the literature regarding the lubricant sensitivity and dilution potential of pregelatinized Taro Boloso-I starch. This study was aimed at performing the in vitro evaluation of paracetamol tablets prepared using pregelatinized Taro Boloso-I starch as a direct compression excipient using paracetamol as a model drug. Methods. Taro Boloso-I starch was pregelatinized, and its properties including amylose to amylopectin ratio, densities, flow properties, swelling power, water solubility index, particle morphology, moisture content, and moisture sorption profile were evaluated. Furthermore, the lubricant sensitivity test, dilution potential study, and compatibility test with the paracetamol drug using ATR spectroscopy were performed. The properties of the directly compressed tablets prepared accordingly were evaluated. The majority of evaluations were performed in comparison with Starch 1500®. Results and Discussion. PGTBIS had a significantly lower amount of amylose than Starch 1500®. In the ATR-IR spectra of the mixture of the paracetamol and pregelatinized PGTBIS, all the major absorbance peaks of the drug were maintained indicating the absence of chemical modifications. PGTBIS showed better flow properties than Starch 1500®. The modified starch was shown to withstand magnesium stearate up to 0.5% concentration. Conclusion. PGTBIS could accommodate higher drug cargo than Starch 1500® with acceptable tablet properties. Accordingly, PGTBIS starch could be taken as a potential direct compression excipient.

Funder

Addis Ababa University

Publisher

Hindawi Limited

Subject

Pharmacology (medical),Organic Chemistry,General Pharmacology, Toxicology and Pharmaceutics,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3