Affiliation:
1. School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454003, Henan, China
Abstract
Because traditional fuzzy clustering validity indices need to specify the number of clusters and are sensitive to noise data, we propose a validity index for fuzzy clustering, named CSBM (compactness separateness bipartite modularity), based on bipartite modularity. CSBM enhances the robustness by combining intraclass compactness and interclass separateness and can automatically determine the optimal number of clusters. In order to estimate the performance of CSBM, we carried out experiments on six real datasets and compared CSBM with other six prominent indices. Experimental results show that the CSBM index performs the best in terms of robustness while accurately detecting the number of clusters.
Funder
Foundation for Scientific and Technological Project of Henan Province
Subject
Electrical and Electronic Engineering,General Computer Science,Signal Processing
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献