Functional Connectivity Pattern Analysis Underlying Neural Oscillation Synchronization during Deception

Author:

Liu Peng12,Shen Hongkui3,Ji Shumei2ORCID

Affiliation:

1. Department of Psychology, Institute of Education Sciences, Shanxi Normal University, Linfen, China

2. Department of Biomedical Engineering, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China

3. Network Information Center, Shanxi Normal University, Linfen, China

Abstract

To characterize system cognitive processes during deception, event-related coherence was computed to investigate the functional connectivity among brain regions underlying neural oscillation synchronization. In this study, 15 participants were randomly assigned to honesty or deception groups and were instructed to tell the truth or lie when facing certain stimuli. Meanwhile, event-related potential signals were recorded using a 64-channel electroencephalography cap. Event-related coherence was computed separately in four frequency bands (delta (1-3.5 Hz), theta (4-7 Hz), alpha (8-13 Hz), and beta (14-30 HZ)) for the long-range intrahemispheric electrode pairs (F3P3, F4P4, F3T7, F4T8, F3O1, and F4O2). The results indicated that deceptive responses elicited greater connectivities in the frontoparietal and frontotemporal networks than in the frontooccipital network. Furthermore, the deception group displayed lower values of coherence in the frontoparietal electrode pairs in the alpha and beta bands than the honesty group. In particular, increased coherence in the delta and theta bands on specific left frontoparietal electrode pairs was observed. Additionally, the deception group exhibited higher values of coherence in the delta band and lower values of coherence in the beta band on the frontotemporal electrode pairs than did the honesty group. These data indicated that the active cognitive processes during deception include changes in ensemble activities between the frontal and parietal/temporal regions.

Funder

Shanxi Province Educational Scientific Planning Issues

Publisher

Hindawi Limited

Subject

Clinical Neurology,Neurology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3