Interdependency and Vulnerability of Multipartite Networks under Target Node Attacks

Author:

Cai Qing1,Pratama Mahardhika1ORCID,Alam Sameer2ORCID

Affiliation:

1. School of Computer Science and Engineering, Nanyang Technological University, Singapore

2. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore

Abstract

Complex networks in reality may suffer from target attacks which can trigger the breakdown of the entire network. It is therefore pivotal to evaluate the extent to which a network could withstand perturbations. The research on network robustness has proven as a potent instrument towards that purpose. The last two decades have witnessed the enthusiasm on the studies of network robustness. However, existing studies on network robustness mainly focus on multilayer networks while little attention is paid to multipartite networks which are an indispensable part of complex networks. In this study, we investigate the robustness of multipartite networks under intentional node attacks. We develop two network models based on the largest connected component theory to depict the cascading failures on multipartite networks under target attacks. We then investigate the robustness of computer-generated multipartite networks with respect to eight node centrality metrics. We discover that the robustness of multipartite networks could display either discontinuous or continuous phase transitions. Interestingly, we discover that larger number of partite sets of a multipartite network could increase its robustness which is opposite to the phenomenon observed on multilayer networks. Our findings shed new lights on the robust structure design of complex systems. We finally present useful discussions on the applications of existing percolation theories that are well studied for network robustness analysis to multipartite networks. We show that existing percolation theories are not amenable to multipartite networks. Percolation on multipartite networks still deserves in-depth efforts.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Project Robustness: Conceptualization, Measurement, and Implications for Decision Making;IEEE Transactions on Engineering Management;2024

2. Network Robustness Improvement Based on Alternative Paths Consideration;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023-12-12

3. Effects of collapse probability on cascading failure dynamics for duplex weighted networks;Physica A: Statistical Mechanics and its Applications;2023-09

4. An adaptive attack model to network controllability;Reliability Engineering & System Safety;2023-07

5. Vulnerability analysis of the Chinese coupled aviation and high-speed railway network;Chinese Journal of Aeronautics;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3