Online Detection of Abnormal Events in Video Streams

Author:

Wang Tian1,Chen Jie2,Snoussi Hichem1

Affiliation:

1. Institut Charles Delaunay, LM2S-UMR STMR 6279 CNRS, University of Technology of Troyes, 10004 Troyes, France

2. Observatoire de la Côte d'Azur, UMR 7293 CNRS, University of Nice Sophia-Antipolis, 06108 Nice, France

Abstract

We propose an algorithm to handle the problem of detecting abnormal events, which is a challenging but important subject in video surveillance. The algorithm consists of an image descriptor and online nonlinear classification method. We introduce the covariance matrix of the optical flow and image intensity as a descriptor encoding moving information. The nonlinear online support vector machine (SVM) firstly learns a limited set of the training frames to provide a basic reference model then updates the model and detects abnormal events in the current frame. We finally apply the method to detect abnormal events on a benchmark video surveillance dataset to demonstrate the effectiveness of the proposed technique.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Suspicious Activity and Theft Detection Using Deep Learning;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

2. Recognition of Human Anomalies Using Convolution Neural Network;2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);2024-04-18

3. Implementation of Video-Based Human Anomalous Activity Detection Using LSTM-RNN Network;2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS);2023-10-18

4. Domain adaptation assisted automatic real-time human-based video summarization;Engineering Applications of Artificial Intelligence;2023-09

5. Water resources allocation considering water supply and demand uncertainties using newsvendor model-based framework;Scientific Reports;2023-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3