Climate Regionalization of Asphalt Pavement Based on the K-Means Clustering Algorithm

Author:

Yang Yanhai1ORCID,Qian Baitong1ORCID,Xu Qicheng2ORCID,Yang Ye13ORCID

Affiliation:

1. School of Transportation Engineering, Shenyang Jianzhu University, Shenyang 110168, China

2. College of Science, Shenyang Jianzhu University, Shenyang 110168, China

3. College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China

Abstract

The climate regionalization of asphalt pavement plays an active role in ensuring the good performance and service life of asphalt pavement. In order to better adapt to the climate characteristics of a region, this study developed a multi-index method of climate regionalization of asphalt pavement. First, meteorological data from the research region were statistically analyzed and the major climate variables were identified. Then, a principal component analysis (PCA) was used to eliminate any correlation between the major climate variables. Three principal components were extracted by the PCA as cluster factors, namely, the temperature factor, precipitation factor, and radiation factor. The research region was divided into the following four asphalt pavement climate zones via the K-means clustering algorithm. Those zones are affected by the climate comprehensively: an inland zone with high temperatures, little rainfall, and radiation, a coastal zone with high temperatures, and a rainy mountainous zone. The results of the climate regionalization were compared with the results of on-site investigations. The pavement degradation in each climatic zone was related to the climate characteristics of the region. Probabilistic neural network (PNN) and support vector machine (SVM) climate regionalization predictive models were established with MATLAB. The clustering factors were used as the input data to identify the climate zones, and the identification accuracy rate was determined to be over 90%. The climate regionalization of pavement can provide reference and guidance for the selection of reasonable technical measures, parameters, and building materials in highway projects with similar climatic conditions.

Funder

Liaoning Distinguished Professor Program

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3