An Efficient Algorithm of Constructing Virtual Backbone Scheduling for Maximizing the Lifetime of Dual-Radio Wireless Sensor Networks

Author:

Liu Bing-Hong,Pham Van-Trung,Nguyen Ngoc-Tu

Abstract

Wireless sensor networks have often been used to monitor environmental conditions, such as temperature, sound, and pressure. Because the sensors are expected to work on batteries for a long time without charging their batteries, the major challenge in the design of wireless sensor networks is to enhance the network lifetime. Recently, many researchers have studied the problem of constructing virtual backbones, which are backbones used for different time periods, to prolong the network lifetime. In this paper, we study the problem of constructing virtual backbones in dual-radio wireless sensor networks to maximize the network lifetime, called the Maximum Lifetime Backbone Scheduling for Dual-Radio Wireless Sensor Network problem, where each sensor is equipped with two radio interfaces. The problem is shown to be NP-complete here. In addition, rather than proposing a centralized algorithm, a distributed algorithm, called a Dominating-Set-Based Algorithm (DSBA), is proposed for a wide range of wireless sensor networks to find a backbone when a new one is required. Simulation results show that the proposed algorithm outperforms some existing algorithms.

Funder

Ministry of Science and Technology, Taiwan

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. International Journal of e-Collaboration (IJeC);International Journal of e-Collaboration;2023-01-23

2. 3D Localization and Error Minimization in Underwater Sensor Networks;ACM Transactions on Sensor Networks;2022-08-31

3. Mobile Crowd-sensing Applications: Data Redundancies, Challenges, and Solutions;ACM Transactions on Internet Technology;2022-05-31

4. Technological Implication of the Digital Twin Approach on the Intelligent Education System;International Journal of Humanoid Robotics;2022-04-21

5. Company user information protection of e-Commerce platform based on a credit assessment system;Annals of Operations Research;2022-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3