A Computational Framework for Revealing Competitive Travel Times with Low-Carbon Modes Based on Smartphone Data Collection

Author:

Bagheri Mehrdad12ORCID,Mladenovic Milos N.2ORCID,Kosonen Iisakki2,Nurminen Jukka K.13ORCID,Roncoli Claudio2ORCID,Ylä-Jääski Antti1ORCID

Affiliation:

1. Aalto University, Department of Computer Science, Espoo, Finland

2. Aalto University, Department of Built Environment, Espoo, Finland

3. University of Helsinki, Department of Computer Science, Helsinki, Finland

Abstract

Evaluating potential of shifting to low-carbon transport modes requires considering limited travel-time budget of travelers. Despite previous studies focusing on time-relevant modal shift, there is a lack of integrated and transferable computational frameworks, which would use emerging smartphone-based high-resolution longitudinal travel datasets. This research explains and illustrates a computational framework for this purpose. The proposed framework compares observed trips with computed alternative trips and estimates the extent to which alternatives could reduce carbon emission without a significant increase in travel time.. The framework estimates potential of substituting observed car and public-transport trips with lower-carbon modes, evaluating parameters per individual traveler as well as for the whole city, from a set of temporal and spatial viewpoints. The illustrated parameters include the size and distribution of modal shifts, emission savings, and increased active-travel growth, as clustered by target mode, departure time, trip distance, and spatial coverage throughout the city. Parameters are also evaluated based on the frequently repeated trips. We evaluate usefulness of the method by analyzing door-to-door trips of a few hundred travelers, collected from smartphone traces in the Helsinki metropolitan area, Finland, during several months. The experiment’s preliminary results show that, for instance, on average, 20% of frequent car trips of each traveler have a low-carbon alternative, and if the preferred alternatives are chosen, about 8% of the carbon emissions could be saved. In addition, it is seen that the spatial potential of bike as an alternative is much more sporadic throughout the city compared to that of bus, which has relatively more trips from/to city center. With few changes, the method would be applicable to other cities, bringing possibly different quantitative results. In particular, having more thorough data from large number of participants could provide implications for transportation researchers and planners to identify groups or areas for promoting mode shift. Finally, we discuss the limitations and lessons learned, highlighting future research directions.

Funder

TrafficSense Project

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3