Automatic Scaling Mechanism of Intermodal EDI System under Green Cloud Computing

Author:

Huang Qiang1ORCID,Sun Lin1ORCID,Jia Furong1ORCID,Yuan Jiaxin1,Wu Yao1ORCID,Pan Jinshan2ORCID

Affiliation:

1. College of Information Engineering, Sichuan Agricultural University, Ya’an City, Sichuan Province 625014, China

2. Southwest Jiaotong University, Chengdu City, Sichuan Province 610031, China

Abstract

EDI is a hot topic in the research of multimodal transportation informatization, which determines the exchange level of intermodal transportation information. However, its high cost, large system coupling degree and low performance threshold cannot adapt to mass data exchange in high concurrent environment. Therefore, a decentralized, scalable, distributed and efficient data exchange system is formed. It plays a key role in realizing the comprehensive sharing of interdepartmental intermodal information in the cloud environment. In order to solve the problem of mismatching between application load and computing resource capacity and realize on-demand resource allocation and low carbon emission, this paper proposes to build an Extensible EDI system (XEDI) based on MSA and studies the scaling mechanism in container environment. Based on the resource scheduling characteristics of container cloud and considering the distribution and heterogeneity of intermodal cloud computing platform from the perspective of resource allocation, the automatic scaling mechanism of XEDI is established, the scaling model is established, and the automatic scaling algorithm is proposed. For Dominant Resource Fairness for XEDI (XDRF) resource allocation algorithm and Dominant Resource Fairness for XEDI (CXDRF) based on carbon considering energy consumption, the CXDRF algorithm is proved by quantitative experiments to achieve system performance optimization on the basis of ensuring system reliability and effectively reducing energy consumption. XEDI can not only meet the demand of dynamic load and improve service quality, but also reduce resource occupation and save energy by releasing virtual resources when resource utilization rate is low. It has great research significance and practical value for mass data application under low energy consumption conditions.

Funder

Sichuan Agricultural University

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Reference26 articles.

1. Performance and scalability testing strategy based on kubemark;Q. Lei

2. Information Management and Applications of Intelligent Transportation System

3. Influence of EDI approach for complexity of information flow in global supply chains;T. Debicki;Business Logistics in Modern Management,2018

4. The Impact of Communication Platforms and Information Exchange Technologies on the Integration of the Intermodal Supply Chain

5. Multimodal transport information sharing platform with mixed time window constraints based on big data

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Green Cloud Computing for the Metaverse: Powering the Future of the Internet with Renewable Energy;2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO);2024-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3