Simulation and Optimization of Dynamic Fracture Parameters for an Inverted Square Nine-Spot Well Pattern in Tight Fractured Oil Reservoirs

Author:

Jiang Le1,Gao Peng2,Liu Jie1,Xiong Yunbin2,Jiang Jing3,Jia Ruizhong2,Li Zhongchao2,Liu Pengcheng1ORCID

Affiliation:

1. School of Energy Resources, China University of Geosciences, Beijing 100083, China

2. Research Institute of Petroleum Exploration and Development of Zhongyuan Oilfields, SINOPEC, Puyang 457100, China

3. Tianjin Branch of CNOOC (China) Co., Ltd., Tianjin 300000, China

Abstract

Dynamic fractures are a geological attribute of water flooding development in tight fractured oil reservoirs. However, previous studies have mainly focused on the opening mechanism of dynamic fractures and the influence of dynamic fractures on development. Few attempts have been made to investigate the optimization of the dynamic fracture parameter. In this study, the inverted square nine-spot well pattern model is established by taking fractured reservoir’s heterogeneity and its threshold pressure gradients into account. This simulation model optimizes the various parameters in a tight fractured oil reservoir with dynamic fractures, that is, the intersection angle between the dynamic fractures and the well array, the number of dynamic fractures, the penetration ratio, and the conductivity of the oil well’s hydraulic fractures. The results of this optimization are used to investigate the oil displacement mechanism of dynamic fractures and to discuss a mechanism to enhance oil recovery using an inverted square nine-spot well pattern. The simulation results indicate that a 45° intersection angle can effectively restrain the increase in the water cut. A single dynamic fracture can effectively control the displacement direction of the injected water and improve the oil displacement efficiency. Moreover, the optimal penetration ratio and the conductivity of the hydraulic fracture are 0.6 and 40 D-cm, respectively.

Funder

Science and Technology Special Funds of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3