Shape Optimization of the Cross-Section for Noncircular Hypersonic Missile Forebody

Author:

Chen Jingfan1ORCID,Fan Xiaoqiang1ORCID,Xiong Bing1,Wang Yi1

Affiliation:

1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China

Abstract

In the hypersonic regime, noncircular missiles have attracted significant attention from researchers. The paper first summarizes the development and present situation of the noncircular missiles at home and abroad. Previous research found that the cross-section shape of missiles has a direct influence on the aerodynamics performance. To find the best cross-section shape in terms of lift-drag-ratio, an efficient and robust shape optimization framework is developed. Class/shape function transformation (CST) method and power-law curve are introduced to complete the parametric modeling of the noncircular missile. The evolutionary algorithm has been utilized to improve the optimization efficiency. A combination of script and journal files is written to automate the CAD loft, mesh generation, and CFD simulations process. Finally, the forebody section of a missile body is chosen as an example to deliver the whole optimization steps. The optimization results show that the lift-to-drag ratio increases from 1.8 to 2.4 when the hypersonic missile forebody cruises at the design condition. The results also demonstrate that the optimized configuration has a better aerodynamic performance than the original one over a wide speed range from Mach 2 to 8 and a wide attack of angle range from 0 to 30.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Supersonic Flow over Elliptic Cone with Different Ellipticity Ratio;Journal of Applied Fluid Mechanics;2023-12-01

2. Aerodynamic Shape Optimization of a Hypersonic Missile Geometry;25th AIAA International Space Planes and Hypersonic Systems and Technologies Conference;2023-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3