High-Precision Dynamics Characteristic Modeling Method Research considering the Influence Factors of Hydropneumatic Suspension

Author:

Wu Wenguang12ORCID,Tang Hongliang12,Zhang Sha3,Hu Lin12ORCID,Zhang Fanhao12

Affiliation:

1. School of Automotive & Mechanical Engineering, Changsha University of Science & Technology, Hunan 410000, China

2. Hunan Key Laboratory of Smart Roadway and Cooperative Vehicle-infrastructure Systems, Changsha University of Science and Technology, Hunan 410000, China

3. CRRC Zhuzhou Institute, Hunan 412000, China

Abstract

In recent years, hydropneumatic suspension (HPS) has come into widespread use for improving the ride comfort and handling of mining dump trucks and off-road vehicles. Therefore, it is critical to improve the mathematical modeling accuracy to enhance the design and control efficiency and accuracy of HPS. This paper aims to propose a model for improving the modeling precision by considering the effect of different factors on HPS characteristics. A computational fluid dynamic (CFD) model of a HPS was developed, and the volume of fluid (VOF) method was used for the transient calculations in order to simulate the fluid dynamic characteristics and determine the damping and stiffness forces of HPS. The effect of temperature, oil viscosity, nitrogen dissolution rate, and suspension vibration speed on the nonlinear characteristics of HPS was investigated. A limited number of simulation sample points were designed based on the variation ranges of the above factors using the design of experiment (DOE) method. The corresponding damping and stiffness force of each sample point were calculated by CFD simulation. The obtained simulation data were utilized for the fitting of a Kriging model. The results demonstrated that the Kriging model can provide high accuracy, with a prediction error lower than 5%. The proposed modeling method of the HPS nonlinear characteristics is highly efficient, accurate, and faster than traditional methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3