Experimental Study on Mesoscopic Shear Behavior of Calcareous Sand Material with Digital Imaging Approach

Author:

Shen Jianhua1,Wang Xing1ORCID,Liu Wenbai21,Zhang Poyu1,Zhu Changqi1,Wang Xinzhi1

Affiliation:

1. State Key Laboratory of Geotechnical Mechanics and Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

2. College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China

Abstract

The study of the mesostructure of soil under loading is the basis for understanding its macromechanical properties and for establishing its constitutive model. In this study, a series of shear tests was performed on dry calcareous sand under constant normal stress by a modified direct shear apparatus. Digital images of the sample at different shear stages are obtained. The mesostructural parameters of the sample are then extracted and analyzed using an image analysis technique. The results show that the shear-band is located at the junction of the upper and lower shear boxes with a thickness of 0.79–1.59 mm. During shearing, the position of the maximum shear strain incremently shifted to the junctions between the two shear boxes. The azimuths of the particles prior to the test distribute symmetrically on both sides of 90°. After the test, the azimuths of the particles are mainly obtuse angles (150–180°) and the long axis of the particles generally points in the opposite direction from the shear-band. The sand particles undergo four stages: random arrangement during initial sample preparation, compaction under normal stress, particle rotation during shearing, and ordered alignment after shearing. The test results help to reveal the movement mechanism of calcareous sand at the mesoscopic level during the direct shear process.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference62 articles.

1. Mechanical properties of calcareous silts in a hydraulic fill island-reef

2. Macro-micro study of compressive deformation properties of calcareous sand with different particle fraction contents;Y. Shen;Rock and Soil Mechanics,2019

3. New drag coefficient model for irregular calcareous sand particles and its application into fluid-particle coupling simulation;Y. Wang;Rock and Soil Mechanics,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3