Image Target Recognition via Mixed Feature-Based Joint Sparse Representation

Author:

Wang Xin1,Tang Can1,Li Ji1,Zhang Peng2ORCID,Wang Wei1ORCID

Affiliation:

1. School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China

2. School of Electronics and Communications Engineering, Sun Yat-sen University, Shenzhen 518107, China

Abstract

An image target recognition approach based on mixed features and adaptive weighted joint sparse representation is proposed in this paper. This method is robust to the illumination variation, deformation, and rotation of the target image. It is a data-lightweight classification framework, which can recognize targets well with few training samples. First, Gabor wavelet transform and convolutional neural network (CNN) are used to extract the Gabor wavelet features and deep features of training samples and test samples, respectively. Then, the contribution weights of the Gabor wavelet feature vector and the deep feature vector are calculated. After adaptive weighted reconstruction, we can form the mixed features and obtain the training sample feature set and test sample feature set. Aiming at the high-dimensional problem of mixed features, we use principal component analysis (PCA) to reduce the dimensions. Lastly, the public features and private features of images are extracted from the training sample feature set so as to construct the joint feature dictionary. Based on joint feature dictionary, the sparse representation based classifier (SRC) is used to recognize the targets. The experiments on different datasets show that this approach is superior to some other advanced methods.

Funder

National Defense Pre-Research Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3