A Pattern-Based Software Testing Framework for Exploitability Evaluation of Metadata Corruption Vulnerabilities

Author:

Deng Fenglei1,Wang Jian1ORCID,Zhang Bin1,Feng Chao1,Jiang Zhiyuan1,Su Yunfei1ORCID

Affiliation:

1. College of Electronic Science, National University of Defense Technology, Changsha 410073, China

Abstract

In recent years, increased attention is being given to software quality assurance and protection. With considerable verification and protection schemes proposed and deployed, today’s software unfortunately still fails to be protected from cyberattacks, especially in the presence of insecure organization of heap metadata. In this paper, we aim to explore whether heap metadata could be corrupted and exploited by cyberattackers, in an attempt to assess the exploitability of vulnerabilities and ensure software quality. To this end, we propose RELAY, a software testing framework to simulate human exploitation behavior for metadata corruption at the machine level. RELAY employs the heap layout serialization method to construct exploit patterns from human expertise and decomposes complex exploit-solving problems into a series of intermediate state-solving subproblems. With the heap layout procedural method, RELAY makes use of the fewer resources consumed to solve a layout problem according to the exploit pattern, activates the intermediate state, and generates the final exploit. Additionally, RELAY can be easily extended and can continuously assimilate human knowledge to enhance its ability for exploitability evaluation. Using 20 CTF&RHG programs, we then demonstrate that RELAY has the ability to evaluate the exploitability of metadata corruption vulnerabilities and works more efficiently compared with other state-of-the-art automated tools.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3