The Regenerative Potential of Facial Nerve Motoneurons following Chronic Axotomy in Rats

Author:

Ni Yusu1ORCID,Chen Diyan1,Jiang Yi2,Qiu Danhong3,Li Wen4,Li Huawei15678ORCID

Affiliation:

1. Otology and Skull Base Surgery Department, Eye and ENT Hospital of Shanghai Medical School, Fudan University, China

2. Department of Ophthalmology, Shanghai Xin Shi Jie Eye Hospital, Shanghai, China

3. Otolaryngology Department, Pudong Hospital, Shanghai, China

4. Central Laboratory, Eye and ENT Hospital of Shanghai Medical School, Fudan University, China

5. ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China

6. Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China

7. NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China

8. The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China

Abstract

Background. The precise mechanisms of nerve regeneration remain unclear. The potential of facial nerve regeneration and probable mechanisms involved following chronic facial nerve injury should be further studied. Methods. Adult male Wistar rats were used to model either (i) facial nerve injury (axotomy) or (ii) reinjury (chronic axotomy followed by a second axotomy within 5 months). The rats were housed in the animal facility of the Eye and ENT Hospital of Shanghai Medical School, Fudan University (Shanghai, China). Expression of Shh (sonic hedgehog) and growth-associated protein 43 (GAP43, a neuronal marker) was detected in bilateral facial nuclei using reverse transcriptase PCR, western blotting analysis, and immunohistochemistry. The number of surviving motoneurons was quantified, and facial nerve regeneration was examined using transmission electron microscopy. Results. Reinjury of the facial nerve 12 weeks after the first axotomy resulted in upregulation of GAP43 mRNA and protein expression in neurons ipsilateral to the axotomy; immunohistochemistry revealed that Shh expression was higher compared with control side facial nuclei at the same time point. GAP43 expression subsequently decreased. Conclusion. The greatest regeneration potential of the facial nerve occurred within 5 months following chronic axotomy in rats, and regeneration may involve the Shh signaling pathway.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3