Affiliation:
1. Key Laboratory of Atmospheric Sounding, Chengdu University of Information Technology, Chengdu 610225, China
2. National Satellite Meteorology Center, China Meteorological Administration, Beijing 100081, China
Abstract
Six machine-learning approaches, including multivariate linear regression (MLR), gradient boosting decision tree, k-nearest neighbors, random forest, extreme gradient boosting (XGB), and deep neural network (DNN), were compared for near-surface air-temperature (Tair) estimation from the new generation of Chinese geostationary meteorological satellite Fengyun-4A (FY-4A) observations. The brightness temperatures in split-window channels from the Advanced Geostationary Radiation Imager (AGRI) of FY-4A and numerical weather prediction data from the global forecast system were used as the predictor variables for Tair estimation. The performance of each model and the temporal and spatial distribution of the estimated Tair errors were analyzed. The results showed that the XGB model had better overall performance, with R2 of 0.902, bias of −0.087°C, and root-mean-square error of 1.946°C. The spatial variation characteristics of the Tair error of the XGB method were less obvious than those of the other methods. The XGB model can provide more stable and high-precision Tair for a large-scale Tair estimation over China and can serve as a reference for Tair estimation based on machine-learning models.
Funder
National Natural Science Foundation of China
Subject
Atmospheric Science,Pollution,Geophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献