Laboratory Investigation on Optimum Selection of a Sand Control Method for an Interbedded Sandstone and Mudstone Reservoir

Author:

Hu Shaofeng1,Wang Lihua1ORCID,Lou Yishan1,Cao Yanfeng2,Meng Wenbo3,Zhang Lei2

Affiliation:

1. School of Petroleum Engineering, Yangtze University, China

2. CNOOC Research Institute, Beijing, China

3. Zhanjiang Branch Company, CNOOC, China

Abstract

It is critical to select an optimized sand control method for an interbedded sandstone and mudstone reservoir (ISMR) due to its serious sand production hazards. However, currently, most general sand control methods cannot meet the requirements of sand control in interbedded sandstone and mudstone reservoirs (e.g., Bohai Bay oil and gas fields from China). Ensuring efficiency of sand control and increasing the oil and gas production rate in this interbedded sandstone and mudstone become more and more important. In this paper, a “multilayer rotatable sand control experimental device” for the interbedded sandstone and mudstone reservoir was developed. A series of sand control experimental studies were conducted by using the proposed device. The net-to-gross ratio (NTG) and well inclinations are two major factors considered in the experimental analysis. In addition, a sensitivity analysis regarding formation particle size distribution (PSD), clay content, and mineral compositions is performed in the experiment under a moderate sand control mode. With systematic experimental test results in this work, combined with numerous existing sand control models, a set of optimum sand control design and the associated optimization template for ISMR were developed, which have been successfully applied in Bohai Bay. Field application results show that NTG and well inclination are two critical parameters in the design of sand control in ISMR. The optimal indexes of a sand control mode are determined as NTG of 0.4 and well inclination of 45°. The introduction of these two key factors in sand control design broadens the application range of moderate sand production.

Funder

National Science and Technology Major Project

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference18 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3