Accurate Recognition and Simulation of 3D Visual Image of Aerobics Movement

Author:

Fan Wenhua12,Min Hyun Joo2ORCID

Affiliation:

1. Sports Institute, Jiaying University, Meizhou 514015, China

2. Sports Institute, Korea Gangneung-Wonju National University, Gangneung 25457, Republic of Korea

Abstract

The structure of the deep artificial neural network is similar to the structure of the biological neural network, which can be well applied to the 3D visual image recognition of aerobics movements. A lot of results have been achieved by applying deep neural networks to the 3D visual image recognition of aerobics movements, but there are still many problems to be overcome. After analyzing the expression characteristics of the convolutional neural network model for the three-dimensional visual image characteristics of aerobics, this paper builds a convolutional neural network model. The model is improved on the basis of the traditional model and unifies the process of aerobics 3D visual image segmentation, target feature extraction, and target recognition. The convolutional neural network and the deep neural network based on autoencoder are designed and applied to aerobics action 3D visual image test set for recognition and comparison. We improve the accuracy of network recognition by adjusting the configuration parameters in the network model. The experimental results show that compared with other simple models, the model based on the improved AdaBoost algorithm can improve the final result significantly when the accuracy of each model is average. Therefore, the method can improve the recognition accuracy when multiple neural network models with general accuracy are obtained, thereby avoiding the complicated parameter adjustment process to obtain a single optimal network model.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3