Improving Topic-Based Data Exchanges among IoT Devices

Author:

Chen Fu12ORCID,Liu Peng2,Zhu Jianming1,Gao Sheng1,Zhang Yanmei1,Duan Meijiao1,Wang Youwei1,Hwang Kai3

Affiliation:

1. Department of Computer Science, Central University of Finance and Economics, Beijing102206, China

2. College of Information Sciences and Technology, The Pennsylvania State University, State College 16801, PA, USA

3. Chinese University of Hong Kong (CUHK), Hong Kong, China

Abstract

Data exchange is one of the huge challenges in Internet of Things (IoT) with billions of heterogeneous devices already connected and many more to come in the future. Improving data transfer efficiency, scalability, and survivability in the fragile network environment and constrained resources in IoT systems is always a fundamental issues. In this paper, we present a novel message routing algorithm that optimizes IoT data transfers in a resource constrained and fragile network environment in publish-subscribe model. The proposed algorithm can adapt the dynamical network topology of continuously changing IoT devices with the rerouting method. We also present a rerouting algorithm in Message Queuing Telemetry Transport (MQTT) to take over the topic-based session flows with a controller when a broker crashed down. Data can still be communicated by another broker with rerouting mechanism. Higher availability in IoT can be achieved with our proposed model. Through demonstrated efficiency of our algorithms about message routing and dynamically adapting the continually changing device and network topology, IoT systems can gain scalability and survivability. We have evaluated our algorithms with open source Eclipse Mosquitto. With the extensive experiments and simulations performed in Mosquitto, the results show that our algorithms perform optimally. The proposed algorithms can be widely used in IoT systems with publish-subscribe model. Furthermore, the algorithms can also be adopted in other protocols such as Constrained Application Protocol (CoAP).

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference34 articles.

1. Dynamical Resource Allocation in Edge for Trustable Internet-of-Things Systems: A Reinforcement Learning Method

2. Towards improving the privacy in the MQTT protocol;M. Fischer;GIoTS,2019

3. IoTivity;IoTivity,2017

4. Clustering for collaborative processing in IoT network;J. Sathish Kumar

5. Constrained application protocol (CoAP);CoAP,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3