Analysis of Factors Affecting the Severity of Automated Vehicle Crashes Using XGBoost Model Combining POI Data

Author:

Chen Hengrui1ORCID,Chen Hong1ORCID,Liu Zhizhen1ORCID,Sun Xiaoke1ORCID,Zhou Ruiyu1ORCID

Affiliation:

1. College of Transportation Engineering, Chang’an University, Xi’an 710000, China

Abstract

The research and development of autonomous vehicle (AV) technology have been gaining ground globally. However, a few studies have performed an in-depth exploration of the contributing factors of crashes involving AVs. This study aims to predict the severity of crashes involving AVs and analyze the effects of the different factors on crash severity. Crash data were obtained from the AV-related crash reports presented to the California Department of Motor Vehicles in 2019 and included 75 uninjured and 18 injured accident cases. The points-of-interest (POI) data were collected from Google Map Application Programming Interface (API). Descriptive statistics analysis was applied to examine the features of crashes involving AVs in terms of collision type, crash severity, vehicle movement preceding the collision, and degree of vehicle damage. To compare the classification performance of different classifiers, we use two different classification models: eXtreme Gradient Boosting (XGBoost) and Classification and Regression Tree (CART). The result shows that the XGBoost model performs better in identifying the injured crashes involving AVs. Compared with the original XGBoost model, the recall and G-mean of the XGBoost model combining POI data improved by 100% and 11.1%, respectively. The main features that contribute to the severity of crashes include weather, degree of vehicle damage, accident location, and collision type. The results indicate that crash severity significantly increases if the AVs collided at an intersection under extreme weather conditions (e.g., fog and snow). Moreover, an accident resulting in injuries also had a higher probability of occurring in areas where land-use patterns are highly diverse. The knowledge gained from this research could ultimately contribute to assessing and improving the safety performance of the current AVs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3