The Mitigatory Effect of Shen-Qi Compound on the Diabetic Thoracic Aortic Complications through Inhibiting the Inflammatory Microenvironment by miR-223-3p/RBP-J/IRF8 Axis

Author:

Tian Ye1ORCID,Xu Gang1ORCID,Gao Hong1ORCID,Xie Hong-Yan1ORCID,Leng Yu-Lin1ORCID,Fu Xiao-Xu1ORCID,Xie Chun-Guang1ORCID

Affiliation:

1. TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China

Abstract

Background. Disruption of the vascular immunological inflammatory microenvironment is linked to metabolic memory impairment. Even though it has been proven that the Shen-Qi compound (SQC) can efficiently halt metabolic memory and preserve vascular endothelial cells, extensive studies need to be done to investigate if it can also change the vascular immune-inflammatory microenvironment by regulating the immune system. This will help figure out the role of stopping metabolic memory. Methods. After 4 weeks on a high-fat diet (HFD), GK rats were used to create a model for diabetic thoracic aortic problems. The effect and mechanisms of SQC on diabetic thoracic aortic complications were assessed by hematoxylin-eosin (H&E) staining, enzyme-linked immunosorbent assay (ELISA), biochemical analysis, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), reverse transcription, real-time polymerase chain reaction (RT-qPCR), immunofluorescence (IF), western blot, and luciferase reporter assays. Results. SQC treatment ameliorates the HFD-induced pathological symptoms as well as the HFD-induced increased concentrations of fasting blood glucose (FBG), fasting insulin (FINS), total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) and decreased concentrations of high-density lipoprotein cholesterol (HDL-C). Besides, SQC counteracted the HFD-induced average fluorescence intensity of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), as well as the concentrations of endothelin-1 (ET-1) and monocyte chemoattractant protein-1 (MCP-1), while rescuing the HFD-induced concentrations of nitric oxide (NO) and nitric oxide synthetase (NOS). Also, SQC decreases apoptosis and oxidative stress in rats with diabetic thoracic aortic complications. In addition, SQC facilitated the polarization of macrophages, stimulated the activation of dendritic cells, and regulated the inflammatory milieu in rats with diabetic thoracic aortic complications. Furthermore, SQC also modulated the miR-223-3p/RBP-J/IRF8 axis in the macrophages of rats with diabetic thoracic aortic complications. Conclusion. SQC ameliorated diabetic thoracic aortic complications through the regulation of apoptosis, oxidative stress, and inflammatory microenvironment mediating by the miR-223-3p/RBP-J/IRF8 axis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3