Hypoxic Microenvironment-Induced Reduction in PTEN-L Secretion Promotes Non-Small Cell Lung Cancer Metastasis through PI3K/AKT Pathway

Author:

Song Xuyang1,He Jinxi1,Shi Bingqing1,Han Yuning1ORCID

Affiliation:

1. General Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan 750001, Ningxia Province, China

Abstract

Objective. Lung cancer is the leading cause of cancer-related deaths worldwide. The aim of this study was to investigate the effects of hypoxic microenvironment on PTEN-L secretion and the effects of PTEN-L on the metastasis of non-small cell lung cancer (NSCLC) and the potential mechanisms. Methods. The expression levels of PTEN-L in NSCLC tissues, cells, and cell culture media were detected. The transfection of PTEN-L overexpression construct or HIF-1α-siRNAs was conducted to manipulate the expression of PTEN-L or HIF-1α. NSCLC cells were introduced into 200 μM CoCl2 medium for 72 hours under 37°C to simulate hypoxia. The proliferation and apoptosis of the A549 cells were determined by the Cell Counting Kit-8 assay and Annexin V-FITC/PI-stained flow cytometry assay, respectively. Wound healing assay and transwell invasion assay were used to measure the migration and invasion of A549 cells. The protein expression of PTEN, PTEN-L, PI3K/AKT pathway-related proteins, and HIF-1α was detected by Western blot. Results. PTEN and PTEN-L are downregulated in lung cancer tissues and cells. The protein expression of PTEN-L in the culture medium of lung cancer cell lines is decreased. The hypoxic microenvironment inhibits PTEN-L secretion. The low level of PTEN-L promotes cell proliferation, migration, and invasion, as well as inhibits apoptosis of A549 cells. The overexpression of PTEN-L attenuated the activation of the PI3K/AKT pathway by the hypoxic microenvironment. The knockdown of HIF-1α upregulates PTEN-L secretion under hypoxia. Conclusions. The hypoxic microenvironment inhibits PTEN-L secretion and thus activates PI3K/AKT pathway to induce proliferation, migration, and invasion promotion, and apoptosis inhibition in NSCLC cells.

Funder

Ningxia Medical University

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3