Shape Prior Embedded Level Set Model for Image Segmentation

Author:

Liu Wansuo1,Wang Dengwei23ORCID,Shi Wenjun1

Affiliation:

1. Aviation Maintenance School for NCO, Air Force Engineering University, Xinyang 464000, China

2. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

3. Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province, Chengdu 611731, China

Abstract

This paper presents an optimized level set evolution (LSE) without reinitialization (LSEWR) model and a shape prior embedded level set model (LSM) for robust image segmentation. Firstly, by performing probability weighting and coefficient adaptive processing on the original LSEWR model, the optimized image energy term required by the proposed model is constructed. The purpose of the probability weighting is to introduce region information into the edge stop function to enhance the model’s ability to capture weak edges. The introduction of the adaptive coefficient enables the evolution process to automatically adjust its amplitude and direction according to the current image coordinate and local region information, thus completely solving the initialization sensitivity problem of the original LSEWR model. Secondly, a shape prior term driven by kernel density estimation (KDE) is additionally introduced into the optimized LSEWR model. The role of the KDE-driven shape prior term is to overcome the problem of image segmentation in the presence of geometric transformation and pattern interference. Even if there is obvious affine transformation in the shape prior and the target to be segmented, the target contour can still be reconstructed correctly. The extensive experiments on a large variety of synthetic and real images show that the proposed algorithm achieves excellent performance. In addition, several key factors affecting the performance of the proposed algorithm are analyzed in detail.

Funder

Fundamental Research Funds for the Central Universities of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3