A Novel Phase Space Reconstruction- (PSR-) Based Predictive Algorithm to Forecast Atmospheric Particulate Matter Concentration

Author:

Ali Shah Syed Ahsin1,Aziz Wajid12ORCID,Ahmed Nadeem Malik Sajjad1,Almaraashi Majid2,Shim Seong-O.2ORCID,Habeebullah Turki M.3ORCID

Affiliation:

1. Department of Computer Sciences and Information Technology, University of Azad Kashmir, 13100 Azad Kashmir, Pakistan

2. College of Computer Sciences and Engineering, University of Jeddah, Saudi Arabia

3. Institute for Hajj and Umrah Research, Umm Al-Qura University, Makkah, Saudi Arabia

Abstract

The prediction of atmospheric particulate matter (APM) concentration is essential to reduce adverse effects on human health and to enforce emission restrictions. The dynamics of APM are inherently nonlinear and chaotic. Phase space reconstruction (PSR) is one of the widely used methods for chaotic time series analysis. The APM mass concentrations are an outcome of complex anthropogenic contributors evolving with time, which may operate on multiple time scales. Thus, the traditional single-variable PSR-based prediction algorithm in which data points of last embedding dimension are used as a target set may fail to account for multiple time scales inherent in APM concentrations. To address this issue, we propose a novel PSR-based scientific solution that accounts for the information contained at multiple time scales. Different machine learning algorithms are used to evaluate the performance of the proposed and traditional PSR techniques for predicting mass concentrations of particulate matter up to 2.5 micron (PM2.5), up to 10 micron (PM10.0), and ratio of PM2.5/PM10.0. Hourly time series data of PM2.5 and PM10.0 mass concentrations are collected from January 2014 to September 2015 at the Masfalah air quality monitoring station (couple of kilometers from the Holy Mosque in Makkah, Saudi Arabia). The performances of various learning algorithms are evaluated using RMSE and MAE. The results demonstrated that prediction error of all the machine learning techniques is smaller for the proposed PSR approach compared to traditional approach. For PM2.5, FFNN leads to best results (both RMSE and MAE 0.04 μgm−3), followed by SVR-L (RMSE 0.01 μgm−3 and MAE 0.09 μgm−3) and RF (RMSE 1.27 μgm−3 and MAE 0.86 μgm−3). For PM10.0, SVR-L leads to best results (both RMSE and MAE 0.06 μgm−3), followed by FFNN (RMSE 0.13 μgm−3 and MAE 0.09 μgm−3) and RF (RMSE 1.60 μgm−3 and MAE 1.16 μgm−3). For PM2.5/PM10.0, FFNN is the best and accurate method for prediction (0.001 for both RMSE and MAE), followed by RF (0.02 for both RMSE and MAE) and SVR-L (RMSE 0.05 μgm−3 and MAE 0.04).

Funder

King Abdulaziz City for Science and Technology

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3