Dimensionality Reduction by Supervised Neighbor Embedding Using Laplacian Search

Author:

Zheng Jianwei1ORCID,Zhang Hangke1,Cattani Carlo2,Wang Wanliang1

Affiliation:

1. School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China

2. Department of Mathematics, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano, Italy

Abstract

Dimensionality reduction is an important issue for numerous applications including biomedical images analysis and living system analysis. Neighbor embedding, those representing the global and local structure as well as dealing with multiple manifolds, such as the elastic embedding techniques, can go beyond traditional dimensionality reduction methods and find better optima. Nevertheless, existing neighbor embedding algorithms can not be directly applied in classification as suffering from several problems: (1) high computational complexity, (2) nonparametric mappings, and (3) lack of class labels information. We propose a supervised neighbor embedding called discriminative elastic embedding (DEE) which integrates linear projection matrix and class labels into the final objective function. In addition, we present the Laplacian search direction for fast convergence. DEE is evaluated in three aspects: embedding visualization, training efficiency, and classification performance. Experimental results on several benchmark databases present that the proposed DEE exhibits a supervised dimensionality reduction approach which not only has strong pattern revealing capability, but also brings computational advantages over standard gradient based methods.

Funder

Provincial Science Foundation of Zhejiang

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonparametric Bayesian Deep Visualization;Machine Learning and Knowledge Discovery in Databases;2023

2. Kernel-based discriminative elastic embedding algorithm;Applied Intelligence;2015-09-02

3. Probabilistic Principal Components and Mixtures, How This Works;Computer Information Systems and Industrial Management;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3