Stacking Ensemble Learning Process to Predict Rural Road Traffic Flow

Author:

Rasaizadi Arash1ORCID,Seyedabrishami Seyedehsan1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

By predicting and informing the future of traffic through intelligent transportation systems, there is more readiness to avoid traffic congestion. In this study, an ensemble learning process is proposed to predict the hourly traffic flow. First, three base models, including K-nearest neighbors, random forest, and recurrent neural network, are trained. Predictions of base models are given to the XGBoost stacking model and bagged average to determine the final prediction. Two groups of models predict traffic flow of short-term and mid-term future. In mid-term models, predictor features are cyclical temporal features, holidays, and weather conditions. In short-term models, in addition to the mentioned features, the observed traffic flow in the past 3 to 8 hours has been used. The results show that for both short-term and mid-term models, the least prediction error is obtained by the XGBoost model. In mid-term models, the root mean square error of the XGBoost for the Saveh to Tehran direction and Tehran to Saveh direction is 521 and 607 (veh/hr), respectively. For short-term models, these values are decreased to 453 and 386 (veh/hr). This model also brings less prediction error for predicting the first and fourth quartiles of the observed traffic flow as rare events.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3