Deep Learning Algorithm in Biomedical Engineering in Intelligent Automatic Processing and Analysis of Sports Images

Author:

Bao Junxiao1,Bei Cuilin1ORCID,Zheng Xiang1,Wang Jinli1

Affiliation:

1. Continuing Education School, Chengde Hebei 067000, China

Abstract

In order to improve the detection and identification ability of sports injury ultrasound medicine, a segmentation method of sports injury ultrasound medical image based on local features is proposed, and the research on the sports injury ultrasound medical detection and identification ability is carried out. Methods of the sports injury ultrasound medical image segmentation model are established; the sports injury ultrasound medical image information is enhanced by using the sports skeletal muscle block matching technology; the image features are extracted; and the characteristics of sports injury ultrasound medical images are analyzed by CT bright spot feature transmission. In detail, combined with the deep convolutional neural network training method, the extracted sports injury points are automatically detected for sports injury ultrasound medical images, and the sports injury ultrasound medical image segmentation is realized. The simulation results show that this method has high accuracy for sports injury ultrasound medical image segmentation, the error value can be controlled below 0.103, and finally, the effect of zero error is achieved. It is confirmed that the method proposed in this paper has high resolution and accuracy for sports injury point detection and has strong practical application ability.

Funder

Chengde Medical University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3