Optimized Multiscale Entropy Model Based on Resting-State fMRI for Appraising Cognitive Performance in Healthy Elderly

Author:

Yang Fan12ORCID,Zhang Fuyi12ORCID,Belkacem Abdelkader Nasreddine3ORCID,Xie Chong12,Wang Ying4,Chen Shenghua12ORCID,Yang Zekun12ORCID,Song Zibo12ORCID,Ge Manling12,Chen Chao4

Affiliation:

1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China

2. Hebei Province Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin 300130, China

3. Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain 15551, UAE

4. Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin 300384, China

Abstract

Many studies have indicated that an entropy model can capture the dynamic characteristics of resting-state functional magnetic resonance imaging (rfMRI) signals. However, there are problems of subjectivity and lack of uniform standards in the selection of model parameters relying on experience when using the entropy model to analyze rfMRI. To address this issue, an optimized multiscale entropy (MSE) model was proposed to confirm the parameters objectively. All healthy elderly volunteers were divided into two groups, namely, excellent and poor, by the scores estimated through traditional scale tests before the rfMRI scan. The parameters of the MSE model were optimized with the help of sensitivity parameters such as receiver operating characteristic (ROC) and area under the ROC curve (AUC) in a comparison study between the two groups. The brain regions with significant differences in entropy values were considered biomarkers. Their entropy values were regarded as feature vectors to use as input for the probabilistic neural network in the classification of cognitive scores. Classification accuracy of 80.05% was obtained using machine learning. These results show that the optimized MSE model can accurately select the brain regions sensitive to cognitive performance and objectively select fixed parameters for MSE. This work was expected to provide the basis for entropy to test the cognitive scores of the healthy elderly.

Funder

National Key Research & Development Program of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3