Affiliation:
1. College of Architecture and Environment, Sichuan University, Chengdu 610065, China
2. Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
Abstract
The objective of this work is to simulate the superelasticity and shape-memory effect in a single-crystalline nickel-titanium (NiTi) alloy through a molecular dynamics (MD) study. Cooling and heating processes for this material are reproduced to investigate the temperature-induced phase transformation in its microstructure. It is found that the martensitic transformation and its reverse process occur accompanied by an abrupt volume change, and the transformed variants lead to the appearance of the (001) type compound twin. In addition, the transform temperatures for martensite start (Ms) and austenite finish (Af) are determined, respectively. The results indicate that when the temperature is beyond Af during the compressive loading-unloading, the superelastic behavior becomes pronounced, which is attributed to the role of nanotwins on the transformation from the austenitic phase (B2) to martensitic phase (B19′). Compared to existing experimental data, a reasonable agreement is achieved through the modeling results, highlighting the importance of the compound twins for dominating the superelasticity of nanostructured NiTi alloys.
Subject
General Engineering,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献