Probabilistic Statistics-Based Endurance Life Prediction of Bridge Structures

Author:

Zhang Yanan1ORCID

Affiliation:

1. School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723001, China

Abstract

With the massive construction of bridge infrastructures, bridge health monitoring systems have gradually matured in application and research, but previous research has primarily focused on structural damage detection and bridge safety warnings based on valid data. The structural details of steel bridge panels and structural systems are determined by the coupling effects of many intrinsic and extrinsic uncertainties, such as material properties, structural characteristics, manufacturing processes, and random traffic loads. The evaluation of fatigue is a difficult task. This article first builds a big data platform, utilizing its high-efficiency parallel computing capability and highly fault-tolerant distributed file system to achieve second-level monitoring data processing; ensuring real-time data cleaning, data analysis, and safety warning; and building a big data analysis and processing platform with high reliability, high availability, high storage efficiency, and high scalability of bridge health monitoring. The big data platform chooses HDFS for offline data storage and Spark for data analysis and modelling after comparing and analysing the benefits and drawbacks of various big data technologies. Kafka is used for caching real-time data, and Spark-streaming is used for reading data and real-time processing. Finally, the platform’s superiority and reliability in terms of offline computing performance, real-time online performance, scalability, and fault tolerance are confirmed through experimental analysis; the optimal data cleaning method is derived by comparing and analysing monitoring data noise, jump point, and drift phenomena. This part of the research is based on bridge temperature data with stable signals and bridge strain data with fluctuating signals, taking into account the influence of different data types; the corresponding data missing repair algorithms are proposed for different types of data to form a complete and general data patching method process. The probabilistic fracture mechanics theory, in comparison to the traditional deterministic fatigue assessment method, can better reflect the essential uncertainty of fatigue problems and is an effective way to assess the fatigue performance of orthotropic steel bridge decks. The goal of data patching is to ensure data recovery accuracy of over 90%, with no patching repair required for monitoring data with too much missing data. The endurance life of bridge structures is predicted using a big data probabilistic statistics approach based on a variety of factors such as material properties, construction characteristics, manufacturing processes, and random traffic loads.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3