Inaccuracy-Tolerant Sparse-to-Dense Depth Propagation for Semiautomatic 2D-to-3D Conversion

Author:

Yuan Hongxing1ORCID

Affiliation:

1. School of Electronics and Information Engineering, Ningbo University of Technology, Ningbo 315211, China

Abstract

Current semiautomatic 2D-to-3D methods assume that user input is perfectly accurate. However, it is difficult to get 100% accurate user scribbles and even small errors in the input will degrade the conversion quality. This paper addresses the issue with scribble confidence that considers color differences between labeled pixels and their neighbors. First, it counts the number of neighbors which have similar and different color values for each labeled pixels, respectively. The ratio between these two numbers at each labeled pixel is regarded as its scribble confidence. Second, the sparse-to-dense depth conversion is formulated as a confident optimization problem by introducing a confident weighting data cost term and the local and k-nearest depth consistent regularization terms. Finally, the dense depth-map is obtained by solving sparse linear equations. The proposed approach is compared with existing methods on several representative images. The experimental results demonstrate that the proposed method can tolerate some errors from use input and can reduce depth-map artifacts caused by inaccurate user input.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3