Finite-Buffer M/G/1 Queues with Time and Space Priorities

Author:

Kim Kilhwan1ORCID

Affiliation:

1. Department of Management Engineering, Sangmyung University, Seoul, Republic of Korea

Abstract

Many communication systems have finite buffers and service delay-sensitive and loss-sensitive types of traffic simultaneously. To meet the diverse QoS requirements of these heterogeneous types of traffic, it is desirable to offer delay-sensitive traffic time priority over loss-sensitive traffic, and loss-sensitive traffic space priority over delay-sensitive traffic. To analyze the performance of such systems, we study a finite-buffer M/G/1 priority queueing model where nonpreemptive time priority is given to delay-sensitive traffic and push-out space priority is given to loss-sensitive traffic. Compared to the previous study on finite-buffer M/M/1 priority queues with time and space priority, where service times are identical and exponentially distributed for both types of traffic, in our model we assume that service times are different and are generally distributed for different types of traffic. As a result, our model is more suitable for the performance analysis of communication systems accommodating multiple types of traffic with different service-time distributions. For the proposed queueing model, we derive the queue-length distributions, loss probabilities, and mean waiting times of both types of traffic, as well as the push-out probability of delay-sensitive traffic. With numerical examples, we also explore how the performance measures are affected by system parameters such as the buffer size, and the arrival rates and mean service times of both types of traffic for different service-time distributions.

Funder

Sangmyung University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3