Affiliation:
1. College of International Studies, Beibu Gulf University, Qinzhou 535011, China
Abstract
When confronted with a plethora of resources, many students struggle to quickly filter out the content that is relevant to them. Because there are many English teaching resources and it is difficult to accurately recommend suitable teaching resources for students. Therefore, in this paper we suggest a personalized recommendation system for English teaching resources, which is founded on learning behavior detection. To begin with, a spatiotemporal convolutional network is introduced to effectively identify students’ online classroom behavior, and a global attention module is added to increase the model’s ability to learn global feature information. Furthermore, the identified characteristics of student behavior are incorporated into the recommendation module. Similarly, the differential evolution (DE) algorithm is implemented to the smoothing factor and kernel function center of a generalized regression neural network (CRNN) for resource recommendation mode, while taking into account the strong dependence of the GRNN training effect on the smoothing factor and the kernel function center. The smoothing factor and offset factor are optimized and solved, and the optimized smoothing factor and offset factor are used to recommend GRNN resources. Experiments show that the approach described in this work first has a high precision (i.e., 90.98%) in behavior recognition, and second, the recommendation performance is superior to both of the comparison algorithms (i.e., 85.23% and 78.33%), resulting in better resource recommendation accuracy. The fundamental goal of this work is to deliver several important guidelines for the informatization and intelligence of the English educational resources and services.
Subject
Computer Networks and Communications,Computer Science Applications
Reference34 articles.
1. Antisocial online behavior detection using deep learning
2. Real-time sow behavior detection based on deep learning
3. Learning temporal and bodily attention in protective movement behavior detection;C. Wang
4. Abnormal behavior detection using a multi-modal stochastic learning approach;P. L. M. Bouttefroy
5. A robust abnormal behavior detection method using convolutional neural network;N. C. Tay,2019
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献