A Compact Frequency and Radiation Reconfigurable Antenna for 5G and Multistandard Sub-6 GHz Wireless Applications

Author:

Ullah Shakir1ORCID,Elfergani Issa23,Ahmad Inzamam1,Din Iftikhar Ud1,Ullah Sadiq1,Rehman Khan Wasi Ur1,Ahmad Toufeeq1,Habib Usman4,Zebiri Chemseddine5,Rodriguez Jonathan2

Affiliation:

1. Department of Telecommunication Engineering, University of Engineering & Technology, 23200 Mardan, Pakistan

2. Instituto de Telecomunicações, Campus Universitário de Santiago, Aveiro 3810-193, Portugal

3. School of Engineering and Informatics Bradford University, Bradford BD7 1DP, UK

4. Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Pakistan

5. Laboratoired’Electronique de Puissance et Commande Industrielle (LEPCI), Dept. of Electronics, University of Ferhat Abbas, Sétif -1-, 19000 Sétif, Algeria

Abstract

This paper presents a reconfigurable antenna operating in three modes at different frequency bands with pattern reconfiguration. Frequency and pattern reconfigurability are achieved using four PIN diodes. In particular, two diodes are mounted in the radiating part of the hexagon shape to perform the frequency reconfiguration of the antenna. The other two PIN diodes are connected with the inverted L-shaped and CPW ground by changing the main lobe beam steering to achieve the pattern reconfiguration. An antenna has been designed, fabricated, and numerically and experimentally assessed. The prototype of the antenna is fabricated on a commercially available FR-4 substrate of thickness 1.6 mm ( ε r  = 4.3). Thus, the proposed antenna supports several 5G sub-6 GHz bands (3.1 GHz, 4.1 GHz, and 3.8 GHz), WiFi (2.45 GHz), as well as (7.8 GHz, 9.5 GHz) X-Band Satellite applications. The obtained results are quite promising. In particular, it is observed that the measured results are in close agreement with the simulation results, and the proposed (compact) antenna prototype can be a prospective candidate for future portable devices, sensor networks, and telecommunication applications.

Funder

EU H2020 Framework Programme

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3