Mulberry Bark Alleviates Effect of STZ Inducing Diabetic Mice through Negatively Regulating FoxO1

Author:

Qiu Fan1,Wang Jiang1,Liu Hua-Yu1,Zhang Yu-Qing1ORCID

Affiliation:

1. School of Biology and Basic Medical Sciences, Soochow University, RM702-2303, No. 199, Renai Road, Dushuhu Higher Edu. Town, Suzhou, China

Abstract

Dysfunction of insulin secretion and hyperglycaemia were commonly found due to damaged β cells of pancreas. In our previous research, it was found that mulberry branch bark powder (MBBP) was effective in treating diabetes in mice which were induced by STZ and high fat diet. The present study was designed to evaluate the protective effect of MBBP on STZ-induced β cells injury and investigate underlying mechanisms. By preventive administration of branch bark powder, the damage caused by STZ injection was found to be alleviated. In MBBP feed groups, pathological weight loss was inhibited, fasting blood glucose was controlled, the incidence of diabetes decreased, and blood lipid level and antioxidant capacities were restored. The PI3K/AKT/FoxO1 signal pathway was found to be activated by key proteins expression and gene testing. In liver, the increased PI3K and phosphorylated AKT, the phosphorylated, and inactivated FoxO1, which regulates the expression of gluconeogenic gene and explains the effect of relieving insulin resistance of MBBP. Therefore, the MBBP improves the tolerance of pancreas to the toxicity of STZ involving the PI3K/AKT/FoxO1 signalling pathway.

Funder

China Agriculture Research System

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3