Circuit Manufacturing Defect Detection Using VGG16 Convolutional Neural Networks

Author:

Althubiti Sara A.1ORCID,Alenezi Fayadh2ORCID,Shitharth S.3ORCID,K. Sangeetha3ORCID,Reddy Chennareddy Vijay Simha4

Affiliation:

1. Department of Computer Science, College of Computer and Information Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia

2. Department of Electrical Engineering, College of Engineering, Jouf University, Saudi Arabia

3. Department of Computer Science and Engineering, Kebri Dehar University, Kebri Dehar, Ethiopia

4. Department of Computer Science, Middlesex University, London, UK

Abstract

Manufacturing, one of the most valuable industries in the world, is boundlessly automatable yet still quite stuck in traditionally manual and slow processes. Industry 4.0 is racing to define a new era of digital manufacturing through Internet of Things- (IoT-) connected machines and factory systems, fully comprehensive data gathering, and seamless implementation of data-driven decision-making and action taking. Both academia and industry understand the tremendous value in modernizing manufacturing and are pioneering bleeding-edge strides every day to optimize one of the largest industries in the world. IoT production, functional testing, and fault detection equipment are already being used in today’s maturing smart factory paradigm to superintend intelligent manufacturing equipment and perform automated defect detection in order to enhance production quality and efficiency. This paper presents a powerful and precise computer vision model for automated classification of defect product from standard product. Human operators and inspectors without digital aid must spend inordinate amounts of time poring over visual data, especially in high volume production environments. Our model works quickly and accurately in sparing defective product from entering doomed operations that would otherwise incur waste in the form of wasted worker-hours, tardy disposition, and field failure. We use a convolutional neural network (CNN) with the Visual Geometry Group with 16 layers (VGG16) architecture and train it on the Printed Circuit Board (PCB) dataset with 3175 RBG images. The resultant trained model, assisted by finely tuned optimizers and learning rates, classifies defective product with 97.01% validating accuracy.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3