An Evaluation Method of Ship-Tracking Algorithms for High-Frequency Surface Wave Radar considering High Maneuvers Generated by the MMG Model

Author:

Iswandi 1ORCID,Hidayat Risanuri1ORCID,Wibowo Sigit B.1

Affiliation:

1. Department of Electrical Engineering and Information Technology, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

Abstract

Thelong-distance coverage of high-frequency surface wave radar (HFSWR) has promoted it as an enormous means for ship monitoring on the country’s maritime territory. Since it is a primaryradar, noncooperative targets can also be detected. However, this radar also has a shortcoming of low spatial and temporal resolutions due to the narrow available bandwidth in the HF band. This limitation can reduce the performance of ship detection and tracking, especially for highly maneuvering ships. This paper proposes a new method to assess the tracking algorithm for a high-maneuvering ship. The absence of a high-maneuvering plot in the AIS data and existing analytical models are replaced by the MMG model run on MANSIM software. The linear, turning, and zigzag motions are generated and used to evaluate the tracking algorithms. The Monte Carlo simulation was conducted regarding the degradation of spatial resolution in the higher radial range. The tracking performance was analyzed by calculating the RMSE of four parameters, i.e., absolute position, radial range, bearing angle, and speed. For a trial case, four tracking algorithms were evaluated, i.e., Kalman filter (KF), extended Kalman filter (EKF), unscented Kalman filter (UKF), and particle filter (PF). The evaluation results showed that the EKF tracker had a minor error for the linear track with RMSE of absolute position, radial range, bearing angle, and speed being 1.368 km, 0.526 km, 1.550°, and 0.005 m/s, respectively. Otherwise, the UKF performed slightly better than EKF for the high maneuver targets. The RMSE of absolute position, radial range, bearing angle, and speed were 1.649 km, 0.639 km, 1.919°, and 0.165 m/s, respectively. The results also ensure the applicability of the MMG model to evaluate the tracking algorithm’s performance in HFSWR.

Funder

Kementerian Riset Teknologi Dan Pendidikan Tinggi Republik Indonesia

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3