Genistein Ameliorated Vascular Endothelial Growth Factor-A (VEGF-A) and Estrogen Receptor-Alpha (ER-α) in Endometriosis Mice Model, In Vivo and In Silico

Author:

Sutrisno Sutrisno12,Maharani Maharani3ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, Faculty of Medicine, University of Brawijaya, Saiful Anwar General Hospital, Malang, East Java, Indonesia

2. Magister of Midwifery, Faculty of Medicine, University of Brawijaya, Malang, East Java, Indonesia

3. Department of Midwifery, Polytechnic of Health-Ministry of Health, Aceh, Indonesia

Abstract

Endometriosis (EM) is a gynecological disorder that causes morbidity in women and is characterized by endometrial tissue in the uterus cavity. This study investigated the mechanism of genistein in the VEGF-A and ER-α expression through in vivo and in silico approaches. An in vivo study was conducted by thirty-six mice that were divided into six groups including control, EM, and EM treatment with genistein with the doses of 1.3, 1.95, 2.6, and 3.25 mg/day for 14 days. Peritoneal tissues with lesions were collected and analyzed by immunohistochemistry to measure the VEGF-A and ER-α expression. The data were analyzed using a statistical approach using one-way ANOVA followed by Tukey HSD test with a significant value p<0.05. In silico study was conducted for investigating the inhibition mechanism of genistein in VEGF-A and ER-α protein. Genistein significantly reduced the VEGF-A and ER-α expression with the optimum dose of 3.25 mg/day. Molecular docking showed that genistein inhibited VEGF-A in several active site residues of VEGF-A, also blocked the ER-α protein in estradiol binding sites. This study concluded that genistein prevented endometriosis by performing the antiangiogenic activity and showed a similar function to estradiol.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3