A Data Collection Method for Mobile Wireless Sensor Networks Based on Improved Dragonfly Algorithm

Author:

Yue Yinggao1ORCID,Lu Dongwan2,Zhang Yong3ORCID,Xu Minghai1,Hu Zhongyi24,Li Bo5,Wang Shuxin1,Ding Haihua1ORCID

Affiliation:

1. School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou, 325035, China

2. Intelligent Information Systems Institute, Wenzhou University, Wenzhou, 325035, China

3. Computer School, Hubei University of Arts and Science, Xiangyang, 441053, China

4. Key Laboratory of Intelligent Image Processing and Analysis, Wenzhou, China

5. Wenzhou Key Laboratory of Intelligent Lifeline Protection and Emergency Technology for Resilient City, Wenzhou University of Technology, Wenzhou, 325035, China

Abstract

For the sensing layer of the Internet of Things, the mobile wireless sensor network has problems such as limited energy of the sensor nodes, unbalanced energy consumption, unreliability, and long transmission delay in the data collection process. It is proved by mathematical derivation and theory that this is a typical multiobjective optimization problem. In this paper, the optimization goal is to minimize the energy consumption and improve the reliability under time-delay constraints and propose a path optimization mechanism to optimize the mobile Sink of mobile wireless sensor networks based on the improved dragonfly optimization algorithm. The algorithm takes full advantage of the abundant storage space, sufficient energy, and strong computing power of the mobile Sink to ensure network connectivity and improve network communication efficiency. Through simulation comparison and analysis, compared with random movement method, artificial bee colony algorithm, and basic dragonfly optimization algorithm, the energy consumption of the network is reduced, the lifespan of the network is increased, and the connectivity and transmission delay of the network are improved. The proposed algorithm balances the energy consumption of the sensors nodes to meet the network service quality and improve the reliability of the network.

Funder

Natural Science Foundation of Hubei Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3