The Effect of Lysophosphatidic Acid duringIn VitroMaturation of Bovine Oocytes: Embryonic Development and mRNA Abundances of Genes Involved in Apoptosis and Oocyte Competence

Author:

Boruszewska Dorota1,Torres Ana Catarina2,Kowalczyk-Zieba Ilona1,Diniz Patricia2ORCID,Batista Mariana2,Lopes-da-Costa Luis2,Woclawek-Potocka Izabela1

Affiliation:

1. Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland

2. CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal

Abstract

In the present study we examined whether LPA can be synthesized and act duringin vitromaturation of bovine cumulus oocyte complexes (COCs). We found transcription of genes coding for enzymes of LPA synthesis pathway (ATXandPLA2) and of LPA receptors (LPAR 1–4) in bovine oocytes and cumulus cells, followingin vitromaturation. COCs were maturedin vitroin presence or absence of LPA (105 M) for 24 h. Supplementation of maturation medium with LPA increased mRNA abundance ofFSTandGDF9in oocytes and decreased mRNA abundance ofCTSsin cumulus cells. Additionally, oocytes stimulated with LPA had higher transcription levels ofBCL2and lower transcription levels ofBAXresulting in the significantly lowerBAX/BCL2ratio. Blastocyst rates on day 7 were similar in the control and the LPA-stimulated COCs. Our study demonstrates for the first time that bovine COCs are a potential source and target of LPA action. We postulate that LPA exerts an autocrine and/or paracrine signaling, through several LPARs, between the oocyte and cumulus cells. LPA supplementation of maturation medium improves COC quality, and although this was not translated into an enhancedin vitrodevelopment until the blastocyst stage, improved oocyte competence may be relevant for subsequentin vivosurvival.

Funder

Polish National Science Centre

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3