Hybrid Metabolic Activity-Related Prognostic Model and Its Effect on Tumor in Renal Cell Carcinoma

Author:

Yu Lei12,Ding Lei2,Wang Zhong-Yuan2ORCID,Zhao Xing-Zhi2,Wang Yu-Hao2ORCID,Liang Chao2ORCID,Li Jie2ORCID

Affiliation:

1. Department of Urology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China

2. Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China

Abstract

Background. Tumor cells with a hybrid metabolic state, in which glycolysis and oxidative phosphorylation (OXPHOS) can be used, usually have a strong ability to adapt to different stress environments due to their metabolic plasticity. However, few studies on tumor cells with this phenotype have been conducted in the field of renal cell carcinoma (RCC). Methods. The metabolic pathway (glycolysis, OXPHOS) related gene sets were obtained from the Molecular Signatures Database (V7.5.1). The gene expression matrix, clinical information, and mutation data were obtained by Perl programming language (5.32.0) mining, the Cancer Genome Atlas and International Cancer Genome Consortium database. Gene Set Enrichment Analysis (GSEA) software (4.0.3) was utilised to analyse glycolysis-related gene sets. Analysis of survival, immune infiltration, mutation, etc. was performed using the R programming language (4.1.0). Results. Eight genes that are highly associated with glycolysis and OXHPOS were used to construct the cox proportional hazards model, and risk scores were calculated based on this to predict the prognosis of clear cell RCC patients and to classify patients into risk groups. Gene Ontology, the Kyoto Encyclopaedia of Genes and Genomes, and GSEA were analysed according to the differential genes to investigate the signal pathways related to the hybrid metabolic state. Immunoinfiltration analysis revealed that CD8+T cells, M2 macrophages, etc., had significant differences in infiltration. In addition, the analysis of mutation data showed significant differences in the number of mutations of PBRM1, SETD2, and BAP1 between groups. Cell experiments demonstrated that the DLD gene expression was abnormally high in various tumor cells and is associated with the strong migration ability of RCC. Conclusions. We successfully constructed a risk score system based on glycolysis and OXPHOS-related genes to predict the prognosis of RCC patients. Bioinformatics analysis and cell experiments also revealed the effect of the hybrid metabolic activity on the migration ability and immune activity of RCC and the possible therapeutic targets for patients.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3