Research on Personalized Minority Tourist Route Recommendation Algorithm Based on Deep Learning

Author:

Liu Guanglu1ORCID

Affiliation:

1. University of Science and Technology Liaoning, Anshan 114051, Liaoning, China

Abstract

With the improvement of living standards, more and more people are pursuing personalized routes. This paper uses personalized mining of interest points of ethnic minority tourism demand groups, extracts customer data features in social networks, and constructs data features of interesting topic factors, geographic location factors, and user access frequency factors, using LDA topic models and matrix decomposition models to perform feature vectorization processing on user sign-in records and build deep learning recommendation model (DLM). Using this model to compare with the traditional recommendation model and the recommendation model of a single data feature module, the experimental results show the following: (1) The fitting error of DLM recommendation results is significantly reduced, and its recommendation accuracy rate is 50% higher than that of traditional recommendation algorithms. The experimental results show that the DLM constructed in this paper has good learning and training performance, and the recommendation effect is good. (2) In this method, the performance of the DLM is significantly higher than other POI recommendation methods in terms of the accuracy or recall rate of the recommendation algorithm. Among them, the accuracy rates of the top five, top ten, and top twenty recommended POIs are increased by 9.9%, 7.4%, and 7%, respectively, and the recall rate is increased by 4.2%, 7.5%, and 14.4%, respectively.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3