Large-Scale Cu Nanowire Synthesis by PVP-Ethylene Glycol Route

Author:

Cuya Huaman Jhon L.1ORCID,Urushizaki Iori1,Jeyadevan Balachandran1

Affiliation:

1. Department of Material Science, School of Engineering, The University of Shiga Prefecture, Hikone, Japan

Abstract

Cu nanowire (NW) is a promising cost-benefit conducting material that could be considered for the development of transparent conducting films (TCF). However, the development of Cu NW as an alternating material for Ag or Au is not only limited by its stability in atmospheric conditions in the nanometer range but also due to the nonavailability of a simple synthetic route to produce them in high yields and in large-scale. Here, a scheme to synthesize Cu NWs by reducing Cu nitrate in a Cl ion-polyvinylpyrrolidine- (PVP-) ethylene glycol (EG) system is proposed. Cu NWs with average diameter around 60 nm and average length of about 40 μm was obtained under optimized experimental conditions. Furthermore, the formation of Cu NW was elucidated to be through the progression of the following sequential reduction steps: at first, Cu ions underwent partial reduction to form spherical Cu2O. Then, the spherical Cu2O particles were redissolved and reduced to metallic Cu0 atoms that subsequently formed the Cu seeds. Thereafter, Cu seeds underwent etching to form multiply-twinned particles (MTP). Finally, these Cu MTP grew unidirectionally to form metallic Cu NWs.

Funder

Ministry of Education, Science, Culture and Sport of Japan

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3