Behaviour of TiC Particles on the Co50-Based Coatings by Laser Cladding: Morphological Characteristics and Growth Mechanism

Author:

Pham Nga Thi-Hong1ORCID,Nguyen Van-Thuc1ORCID

Affiliation:

1. Mechanical Engineering Faculty, HCMC University of Technology and Education, 1 Vo Van Ngan St., Thu Duc District, Ho Chi Minh City 700000, Vietnam

Abstract

H13 steel surfaces are covered by coatings of Co-based alloy with 0, 10, 20, and 30 wt. % TiC using the laser cladding (LC) method. The morphological characteristics, growth mechanism, and the mechanical properties of TiC on the microstructure of the coatings were studied. The results show that TiC in the TiC/Co50 composite coating is composed of two parts: incompletely melted TiC and in situ TiC. TiC content has a great effect on the morphology of TiC, and it exists in different shapes: original TiC, fine-particle TiC, segregated TiC, petal-shaped TiC, and branch-shaped TiC. Additionally, the morphology of TiC in different areas of the coating is different, while TiC size gradually increases from bonding zone to surface. In the 10% TiC+Co50 coating, TiC mainly appears as undermelted, fine particles, precipitates, and having shapes of polygons and petals. From the bottom of this coating, the number of petal-shaped TiC has increased, and the particle size is also enlarged. In the 20% TiC+Co50 coating, the TiC in the coating mainly presents as undermelted, fine particles, and dendritic morphology. From the bottom of this coating to the surface, the particle size of the undermelted TiC shows a clear gradient change. Finally, the 30% TiC+Co50 coating does not have in situ TiC, and there is no obvious gradient change in the particle size of undermelted TiC. After coating by the LD method, the surface hardness is strongly enhanced. The average hardness of Co50 alloy, Co+10% TiC, and Co+20% TiC composite coatings is 499 HV0.2, 552 HV0.2, 590 HV0.2, and 824 HV0.2, respectively. These values are 2.4–4.0 times harder than that of the H13 substrate. The wear resistance of Co50 alloy, Co+10% TiC, and Co+20% TiC composite coatings is greatly higher than that of H13 steel, showing excellent wear characteristics. The friction coefficient of the coatings which have TiC is very stable. Therefore, the coatings can satisfy the requirement of tool steels applications. Additionally, the wear mechanism of the coating at room temperature is mainly brittle spalling, adhesive, and ploughing. At 700°C, the wear mechanism is mainly oxidation and fatigue.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polybutylene terephthalate (PBT) blends and composites: A review;Vietnam Journal of Chemistry;2024-04-26

2. Effect of nano-Y2O3 on the microstructure and wear behaviour of TIG cladded TiC-Co-nY2O3 coating;International Journal of Refractory Metals and Hard Materials;2023-02

3. Effect of CeO2 Addition on Grain Refinement and Mechanical Properties of Stellite-6 Coating Fabricated by Laser Cladding;Journal of Thermal Spray Technology;2022-08-16

4. Degradable Polyesters based on Oxygenated Fatty Acid Monomer;Journal of Wuhan University of Technology-Mater. Sci. Ed.;2022-07-21

5. Research progress in surface strengthening technology of carbide-based coating;Journal of Alloys and Compounds;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3