Data-Driven Method for Predicting Soil Pressure of Foot Blades within a Large Underwater Caisson

Author:

Huang Can12,Zhu Hao1,Li Kunyao1,Zheng Jianxin1,Li Hao1,Li Jiaming3ORCID,Xiao Yao1

Affiliation:

1. Research and Development Center of Transport Industry of Intelligent Manufacturing Technologies of Transport Infrastructure, CCCC Second Harbor Engineering Company Ltd., Wuhan 430000, China

2. CCCC Highway Bridge National Engineering Research Centre Co. Ltd., Beijing 100120, China

3. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

The soil pressure on the bottom surface of the foot blades is an important monitoring point during the sinking process of large underwater caissons. Complex soil-structure interactions occur during the sinking process, making it difficult to accurately predict the soil pressure of foot blades. Accurate construction processes often rely on data from the soil pressure of foot blades in the field. In this study, a data-driven approach is used to establish the relationship between the amount of sinking of the caisson and the soil pressure of foot blades. Furthermore, by improving the splitting method of the original Classification and Regression Tree (CART) algorithm, a single model’s numerical prediction of 80-foot blades soil pressures is realized. The improved CART model, multilayer perceptron (MLP), long short-term memory (LSTM), and a linear regression model are compared through a comprehensive multiparameter evaluation method. Finally, this article discusses the deployment scheme of the model by comparing and analyzing the data in the time period of 10 : 00 on July 29, 2020, and 23 : 00 on August 7, 2020. The experimental results can satisfy the engineering demands and provide a basis for further data-driven intelligent control of large caisson sinking.

Funder

National Development Plan

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3