Solution Uptake in Cylindrical Carbon-Fibre-Reinforced Polymer (CFRP) Tendons

Author:

Scott Paul1,Toumpanaki Eleni2ORCID,Lees Janet M.3ORCID

Affiliation:

1. Cambridge Design Partnership, Church Road, Toft, Cambridge CB23 2RF, UK

2. University of Bristol, Department of Civil Engineering, University Walk, Bristol BS8 1TR, UK

3. Department of Engineering, Civil Engineering Building, University of Cambridge, JJ Thomson Ave 7a, Cambridge CB3 0FA, UK

Abstract

Salt water exposure conditions relevant to carbon-fibre-reinforced polymer (CFRP) prestressed concrete structures in marine environments are investigated. The diffusion into relatively small diameter CFRP tendons can be a lengthy process so the prediction of the long-term moisture uptake using short-term experiments on thin films of epoxy would be advantageous. However, the fibre inclusions within a composite introduce complexities, and factors are typically required for correlation with pure epoxy specimens. Diffusion parameters based on moisture uptake result from CFRP tendons exposed to salt water solution at 20°C and 60°C are compared with those obtained using equivalent thin film specimens. The higher temperature is selected to accelerate the moisture uptake. It is found that the measured ratios of tendon and epoxy diffusivity were temperature dependent, and the combination of the higher temperature and salt solution leads to an increased propensity for moisture uptake in the tendon. Existing analytical models to predict the CFRP tendon diffusivity from that of a thin film of epoxy did not appear to capture the observed trends. However, predictions using a unit cell with a fibre interface zone suggest that this may be due to an increased diffusivity in the interphase region.

Funder

University of Cambridge

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3