Manufacturing of Filament for 4D Printing through Polyether-Type TPU/PLA Blend

Author:

Shin Eun Joo1ORCID,Song Ye Jin1,Jung Yang Sook2,Jung Imjoo3,Lee Sunhee3ORCID

Affiliation:

1. Department of Chemical Engineering, Dong-A University, 550-37 Nakdong-daero, Saha-gu, Busan, Republic of Korea

2. Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea

3. Department of Fashion Design, Dong-A University, 550-37 Nakdong-daero, Saha-gu, Busan, Republic of Korea

Abstract

Reversible deformation structure fabricated by 4D printing can be applied in various fields, such as actuators, intelligent mechanisms, and soft robots. In this study, 4D filaments for use in fused deposition modeling (FDM) 3D printers were fabricated by melt extrusion process mixing polylactic acid (PLA) and soft actuator grade thermoplastic polyurethane (TPU) 75 Shore A. The morphological (scanning electron microscopy, atomic force microscopy), chemical (Fourier transform infrared), thermal (differential scanning calorimetry, dynamic mechanical analysis, thermogravimetric analysis), mechanical (Instron), and WAXS properties of the prepared TPU/PLA blend (5 : 5, 7 : 3, 9 : 1) filaments were investigated. Filaments of 4D auxetic reentrant TPU/PLA samples were 3D printed, and their shape-memory characteristics were assessed at temperatures of 60°C (corresponding to the glass transition temperature of PLA), 70°C, 80°C (matching the melting temperature of the soft segment of TPU), and 90°C. The properties of TPU/PLA samples differ based on the PLA to TPU ratio, with an increase in TPU content resulting in a higher shape setting temperature but a shorter shape recovery time. For the TPU/PLA 5 : 5 sample, setting at 70°C and recovering at 85°C is the most suitable condition for shape recovery, whereas for the TPU/PLA 7 : 3 sample the best conditions are setting at 80°C and recovering at 95°C. In the case of TPU/PLA 9 : 1, shape setting is possible at 90°C, and shape recovery is fastest at 95°C. A 4D structure of TPU/PLA could be achieved based on shape memory testing by temperature stimulation of 3D printed auxetic c TPU/PLA samples.

Funder

Ministry of Education, South Korea

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3