A High-Efficiency Fatigued Speech Feature Selection Method for Air Traffic Controllers Based on Improved Compressed Sensing

Author:

Yan Yonggang12,Mao Yi3ORCID,Shen Zhiyuan1ORCID,Wei Yitao1ORCID,Pan Guozhuang1,Zhu Jinfu1

Affiliation:

1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211016, China

2. Air Traffic Administration Bureau, Civil Aviation Administration of China, Beijing 100022, China

3. State Key Laboratory of Air Traffic Management System and Technology, Nanjing 210007, China

Abstract

Air traffic controller fatigue has recently received considerable attention from researchers because it is one of the main causes of air traffic incidents. Numerous research studies have been conducted to extract speech features related to fatigue, and their practical utilization has achieved some positive detection results. However, there are still challenges associated with the applied speech features usually being of high dimension, which leads to computational complexity and inefficient fatigue detection. This situation makes it meaningful to reduce the dimensionality and select only a few efficient features. This paper addresses these problems by proposing a high-efficiency fatigued speech selection method based on improved compressed sensing. For adapting a method to the specific field of fatigued speech, we propose an improved compressed sensing construction algorithm to decrease the reconstruction error and achieve superior sparse coding. The proposed feature selection method is then applied to optimize the high-dimension fatigued speech features based on the fractal dimension. Finally, a support vector machine classifier is applied to a series of comparative experiments using the Civil Aviation Administration of China radiotelephony corpus to demonstrate that the proposed method provides a significant improvement in the precision of fatigue detection compared with current state-of-the-art approaches.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fatigue Detection Based on Multiple Facial Features;2023 42nd Chinese Control Conference (CCC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3