Joint Decision-Making Model Based on Consensus Modeling Technology for the Prediction of Drug-Induced Liver Injury

Author:

Wang Yukun12ORCID,Chen Xuebo2ORCID

Affiliation:

1. School of Chemical Engineering, University of Science and Technology Liaoning, No. 185, Qianshan, Anshan 114051, Liaoning, China

2. School of Electronic and Information Engineering, University of Science and Technology Liaoning, No. 185, Qianshan, Anshan 114051, Liaoning, China

Abstract

Drug-induced liver injury (DILI) is the major cause of clinical trial failure and postmarketing withdrawals of approved drugs. It is very expensive and time-consuming to evaluate hepatotoxicity using animal or cell-based experiments in the early stage of drug development. In this study, an in silico model based on the joint decision-making strategy was developed for DILI assessment using a relatively large dataset of 2608 compounds. Five consensus models were developed with PaDEL descriptors and PubChem, Substructure, Estate, and Klekota–Roth fingerprints, respectively. Submodels for each consensus model were obtained through joint optimization. The parameters and features of each submodel were optimized jointly based on the hybrid quantum particle swarm optimization (HQPSO) algorithm. The application domain (AD) based on the frequency-weighted and distance (FWD)-based method and Tanimoto similarity index showed the wide AD of the qualified consensus models. A joint decision-making model was integrated by the qualified consensus models, and the overwhelming majority principle was used to improve the performance of consensus models. The application scope narrowing caused by the overwhelming majority principle was successfully solved by joint decision-making. The proposed model successfully predicted 99.2% of the compounds in the test set, with an accuracy of 80.0%, a sensitivity of 83.9, and a specificity of 73.3%. For an external validation set containing 390 compounds collected from DILIrank, 98.2% of the compounds were successfully predicted with an accuracy of 79.9%, a sensitivity of 97.1%, and a specificity of 66.0%. Furthermore, 25 privileged substructures responsible for DILI were identified from Substructure, PubChem, and Klekota–Roth fingerprints. These privileged substructures can be regarded as structural alerts in hepatotoxicity evaluation. Compared with the main published studies, our method exhibits certain advantage in data size, transparency, and standardization of the modeling process and accuracy and credibility of prediction results. It is a promising tool for virtual screening in the early stage of drug development.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3